Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20415, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990118

RESUMEN

Habitat selection studies facilitate assessing and predicting species distributions and habitat connectivity, but habitat selection can vary temporally and among individuals, which is often ignored. We used GPS telemetry data from 96 Gray wolves (Canis lupus) in the western Great Lakes region of the USA to assess differences in habitat selection while wolves exhibited resident (territorial) or non-resident (dispersing or floating) movements and discuss implications for habitat connectivity. We used a step-selection function (SSF) to assess habitat selection by wolves exhibiting resident or non-resident movements, and modeled circuit connectivity throughout the western Great Lakes region. Wolves selected for natural land cover and against areas with high road densities, with no differences in selection among wolves when resident, dispersing, or floating. Similar habitat selection between resident and non-resident wolves may be due to similarity in environmental conditions, when non-resident movements occur largely within established wolf range rather than near the periphery or beyond the species range. Alternatively, non-resident wolves may travel through occupied territories because higher food availability or lower human disturbance outweighs risks posed by conspecifics. Finally, an absence of differences in habitat selection between resident and non-resident wolf movements may be due to other unknown reasons. We recommend considering context-dependency when evaluating differences in movements and habitat use between resident and non-resident individuals. Our results also provide independent validation of a previous species distribution model and connectivity analysis suggesting most potential wolf habitat in the western Great Lakes region is occupied, with limited connectivity to unoccupied habitat.


Asunto(s)
Lobos , Humanos , Animales , Ecosistema , Territorialidad , Movimiento , Great Lakes Region
2.
Sci Rep ; 10(1): 8498, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444633

RESUMEN

With efforts to restore large mammal populations following extirpations, it is vital to quantify how they are impacted by human activities and gain insights into population dynamics in relation to conservation goals. Our objective was to characterize cause-specific mortality of black bears (Ursus americanus) throughout their range. We first quantified cause-specific mortality for 247 black bears in one harvested and two non-harvested populations. We then simulated a small recolonizing population with and without anthropogenic mortality. Lastly, we conducted a meta-analysis of all published black bear mortality studies throughout North America (31 studies of 2630 bears). We found anthropogenic mortality was greater than natural mortality, non-harvest anthropogenic mortality (e.g. poaching, defense of property, etc.) was greater in non-harvested populations, and harvesting was one of the major causes of mortality for bears throughout their range. Our simulation indicated that removing anthropogenic mortality increased population size by an average of 23% in 15 years. We demonstrated that bears are exposed to high levels of anthropogenic mortality, and the potential for human activities to slow population growth in expanding populations. Management and conservation of wide-ranging mammals will depend on holistic strategies that integrate ecological factors with socio-economic issues to achieve successful conservation and coexistence.


Asunto(s)
Conservación de los Recursos Naturales , Actividades Humanas , Longevidad , Dinámica Poblacional , Ursidae/fisiología , Animales , Femenino , Humanos , Masculino , América del Norte , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...